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Abstract

We propose a hybrid method combining an atomic model and a continuum
model, in which the displacement field of the continuum is introduced as a new
degree of freedom by extending Andersen’s Lagrange function for constant-
pressure molecular dynamics. We applied our method to a one-dimensional
hybrid model which is composed of an atomic chain and springs. Large-scale
fluctuation of the atomic system is found in the hybrid model. The density
of states of the phonon is derived, and the large-scale fluctuation induces the
generation of a variety of states of phonons. It is shown that the hybrid model
proposed by our methodology enables us to perform large-scale simulations
without intensive computations.

Recently there has been an increased interest in multiscale modelling as a promising
methodology of computational material sciences. Multiscale modelling enables us to analyse
non-equilibrium systems, such as dislocations, grain boundaries, and crack propagation, in
which microscopic and macroscopic scales closely interact [1, 2]. In these studies, the systems
are decomposed into domains characterized by different scales, typical models at these scales
are employed, and these models are connected by a hybrid method [3-6].

The key technique in the hybrid method is how to connect the scales across the interfaces
between the domains. Many studies have been devoted to connecting the scales. Broughton
et al [7-9] proposed an interface between an atomic model and a continuum model described
by the finite elements (FEs), in which the FE meshes were reduced to the atomic level and the
mean-force coupling was introduced. The quasicontinuum technique, which was developed
by Tadmor et al [10] to simulate defects in solids, provided a mixed continuum and atomic
lattice approach at zero temperature. Rudd et al [11, 12] proposed a coarse-grained molecular
dynamics technique, in which the thermal effect was taken into account through statistical
coarse-graining procedures.

0953-8984/07/246203+07$30.00 © 2007 IOP Publishing Ltd  Printed in the UK 1


http://dx.doi.org/10.1088/0953-8984/19/24/246203
mailto:soshyan@hotmail.com
http://stacks.iop.org/JPhysCM/19/246203

J. Phys.: Condens. Matter 19 (2007) 246203 G Kim and Y Senda

Figure 1. Schematic views of (a) Andersen’s model and (b) the hybrid model. (a) In Andersen’s
model, the atoms (solid circles) in a container are under fixed external pressure Pey through a piston
of mass Q. (b) In the hybrid model, the finite elements of the continuum on the piston are drawn as
triangles (see the text for details).

In this paper, a new methodology coupling an atomic model and a continuum model will
be proposed by extending the well-known Andersen’s method [13] for the constant-pressure
molecular dynamics (MD) algorithm. In Andersen’s method, the volume of the atomic system
is introduced as a new degree of freedom, and the dynamics of the ‘extended system’ generates
isobaric trajectories of atoms. Several types of the extended system have been developed by
introducing a new degree of freedom [14—16], and these methods have been widely used in the
studies of MD simulations, including ab initio MD simulation [17]. Our coupling system is
a kind of extended system, in which the displacement field of the continuum is introduced as
a new degree of freedom. The purposes of this paper are (1) to propose a new methodology
for coupling an atomic model and a continuum model using the extended Lagrange function,
and (2) to apply the methodology to a simple system: a one-dimensional hybrid model.

In Andersen’s method, the constant-pressure MD is realized by introducing the volume V
as a new degree of freedom. The Lagrange function of the system of N atoms constrained in
isotropically fluctuating volume V under constant hydrostatic pressure Pe is defined as

N V236 .S
. . m;V<I°s; - s;
L(tsi sk V. V) = ) ——————@(V'7 s +

1

"/2
Q2 - Pexv’ (1)

where s; and m; are the normalized position vector and mass of the ith atom, respectively. s;
is related to the atomic position vector r; as r; = V173, s; is the time rate of s;. ® is the
potential energy of interatomic interactions. The parameter Q plays the role of mass. The
Lagrange function has a physical meaning, as schematically shown in figure 1(a), where the
atomic system in a container is compressed by a piston of mass Q. The first two terms on
the right in equation (1) are atomistic kinetic and potential energies. The last two terms can
be interpreted as kinetic and potential energies of the piston. The atomic system is under the
periodic boundary condition. The equations of motion of the degrees of freedom of {s;} and V
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are derived from equation (1). The equation of motion of V' is written as

v 1 y
0 =3y |2K+ D mi F | = Pa, 2)

where K is the kinetic energy of the atomic system and F; is the total force acting on the ith
atom. The first two terms on the right in equation (2) correspond to the internal pressure of
the atomic system. It is understood from equation (2) that the driving force of fluctuation of
V comes from the imbalance between the internal pressure and the constant external pressure
Pex, and the internal pressure fluctuates around at Pe. The timescale for this fluctuation is
determined by Q. Time integration of the equations of motion of atoms provides isobaric
trajectories in phase space.

We propose a new methodology for coupling an atomic model and a continuum model by
extending the above Andersen’s method as follows. Let us suppose that the hybrid model
is composed of an atomic system and an elastic continuum and that they closely interact.
This hybrid model is shown schematically in figure 1(b); the atomic system is connected to
the elastic continuum through the piston. The atomic system is under the periodic boundary
condition. The continuum is described by triangular elements. On the basis of general elastic
theory and the FE algorithm, the energy of the continuum is given as, without body force,

Ne  Imax
Z [’/.t,u,lMu,l,m ’/‘L,u.,m + uu,lK,u.,l,mu;L,m]’ (3)

woIm
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where u,,; is the displacement of the /th node of the uth finite element, and the subscripts
[, m indicate Cartesian directions; therefore, the [, m sum runs over Imax: 3 X 2 for triangular
elements in two-dimensional FEs. N, is the number of elements. The first term is the kinetic
energy of the elements, where M, ; ,, is the mass matrix of the pth element. The second term
is the elastic potential energy of the elements, which involves the stiffness matrix K, ; ,,. It
is seen in figures 1(a) and (b) that the elastic stress of the continuum gives the pressure acting
on the piston and that the external pressure Py in Andersen’s model is replaced by the elastic
stress of the continuum. This means that the potential P,V in equation (1) can be replaced by
the elastic potential energy,

Limax

D s K gty (V). “)

o lm

u,y1(V) is the displacement of the nodes contacting with the atomic system through the piston
and its value depends on the variable volume V and on how the nodes contact with the atomic
system spatially. The p'th element having such nodes is indicated by the grey triangles in
figure 1(b). The new degrees of freedom of the displacements of the nodes can be introduced
using this elastic potential energy, and the Lagrange function of Andersen’s model is extended
as
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Figure 2. Schematic views of the one-dimensional hybrid model. In the upper panel, the model
is illustrated under the periodic boundary condition. Atoms in the basic cell are drawn by solid
circles, and atoms in the image cells as open circles. Springs are connected to the atomic chain.
In the bottom panel, the detail of the hybrid model is illustrated; an atomic chain of length [ is
connected to springs. Displacements of the springs are indicated as u,,.

The first two terms on the right are the atomic energy and the third term is the kinetic
energy of the piston. These three terms are also presented in the Lagrange function of
equation (1). The fourth term is the above elastic potential energy of equation (4). The
last two terms are the kinetic and elastic potential energies of the elements which do not
directly contact with the atomic system, and these elements are indicated by the open triangles
in figure 1(b). In the new Lagrange function of equation (5), the elastic potential energy
%Z MZ;“,; w1 (VK 1 mu,w m(V) plays the role of bridging between the atomic system and
the continuum through V. The equations of motion for the degrees of freedom {s;}, V, and
{11} are derived from the new Lagrange function. The dynamics of the atomic system and
the continuum of the hybrid model can be obtained by the time integration of the equations of
motion. The element size is of the order of magnitude of the volume of the atomic system;
therefore, it is not necessary to reduce the element size to the atomic lattice size.

We applied the above method to a one-dimensional hybrid model as shown in figure 2.
The hybrid model is composed of an atomic chain and springs, in which the periodic boundary
condition is imposed on the atomic chain. According to the above procedure, the Lagrange
function of this model has the form

N N2 N 2
. ; . m; (ls;) 0l
L({si, $i} 10w, i) = Z} = D ls-s)+=-
i= i,j=1(j<i)
k N m 112 N k
= U=l —w) YT =Y S e — wy)’, ©6)
n=I1 n=2

where [ is the atomic chain length and [y is the equilibrium length. ¢ (I|s; — s;|) is the pair
potential energy between the ith and jth atoms of the atomic chain. Ny is the number of
springs. u,, m, and k, are the displacement, mass and spring constant of the uth spring,
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Figure 3. Time evolution of the atomic chain length / of the one-dimensional hybrid model.

respectively. The fourth term, ky (I — [y — u)? /2, in equation (6) is the elastic potential energy
of the spring that is adjacent to the atomic chain (. = 1). The last two terms are the kinetic and

elastic potential energies of the springs except the adjacent spring (u = 2,3, ..., Ny — 1, Ny).
From function (6), we obtain the equations of motion for {s;}, [, and {u,}:
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The first two terms in equation (8) are the internal pressure (force in the present one-
dimensional system) of the atomic chain. The last term in equation (8) is the elastic force
caused by the spring (u = 1), and this term plays the role of connecting the atomic chain to
the springs.

In the simulation of the hybrid model, we used the Lennard-Jones pair potential of argon,
and the atomic chain was composed of 50 atoms. We connected the atomic chain to nine
springs. Each spring had the same mass as that of the atomic chain and the spring constant
was derived from the conventional MD simulations of the atomic chain. Gear’s algorithm was
used to integrate the equations of motion of equations (7)—(9), and the time step was set as
2.15 fs. The temperature was adjusted to 5 K. Initial values of length of atomic chain / and
displacements of the springs u, and their time rates were set to generate the long-wavelength
normal mode in the hybrid model.

The atomic chain length / as a function of time is shown in figure 3. A characteristic
feature is found in the curve [(¢). The curve [(¢) consists of two types of mode: high frequency
(period ~0.03 ns) and low frequency (period ~0.6 ns). The high-frequency mode has a small
amplitude, and the low-frequency a large amplitude. The high-frequency mode in the curve
[(t) comes from the imbalance between the internal force of the atomic chain and the elastic
force of the spring (u = 1). It is shown in the equation of motion for / of equation (8) that
the first two terms on the right correspond to the internal force of the atomic chain and the last
term to the elastic force of the spring. This imbalance in force gives rise to the high-frequency
mode of the /(¢). Its frequency depends on the choice of Q. This small fluctuation in the atomic
system shows in constant-pressure MD simulations of Andersen’s method, in which the volume
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Figure 4. Density of states (DOS) of the phonon calculated by (a) the hybrid model and (b) the
conventional MD simulation using 50 atoms. The red line in (a) indicates the DOS calculated by
the conventional MD simulation using 500 atoms. In the upper right-hand part of (b), the DOS at
the range from 1.2 to 1.5 THz is shown again in a different scale.

fluctuates around an equilibrium volume. The variable elastic force of the spring results in the
low-frequency mode of the /(¢). The timescale of this mode is determined by the dynamics of
the springs. The springs have a long-wavelength normal mode; therefore, the low-frequency
mode of /() has a large timescale. The large amplitude of the low-frequency mode also comes
from the considerably large amplitude of the normal mode of the springs in the hybrid model.
This large-scale fluctuation of the atomic system in the hybrid model is a different result from
that in Andersen’s model.

It is expected that the large-scale fluctuation of the atomic system influences the dynamical
properties of atoms. The density of states (DOS) of the atomic vibration mode (phonon) is
derived from the Fourier transformation of the velocity auto-correlation function ¥ (¢) as
(Vi (0) - vi (1))

(vi(0) - vi(0))”

where v; is the velocity of the ith atom, and the bracket (- - -) means time average. The DOS
in the above hybrid model is shown in figure 4(a). The DOS is compared with that obtained in
the conventional MD simulation using 500 atoms, which is ten times 50 atoms in the atomic
system of the hybrid model. Figure 4(b) shows the DOS calculated in the conventional MD
simulation using 50 atoms; narrow Gaussians are found in the curve. The DOS in the hybrid
model in figure 4(a) can reproduce that obtained in the large system of 500 atoms, while the
DOS in the small system of 50 atoms in figure 4(b) is quite different.

The difference in the DOS can be explained as being associated with the large-scale
fluctuation of the atomic system in the hybrid model. In the small system of 50 atoms in
the conventional MD simulation, a limited number of states of the atomic vibration mode
are generated. The limited number of the states results in the narrow Gaussian, as shown in

Y(t) = (10)
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figure 4(b). In the hybrid model many states of the atomic vibration mode are generated in the
atomic system of even 50 atoms. It can be expected that the large-scale fluctuation in the hybrid
model causes the generation of a variety of atomic vibration modes, which leads to broadening
of the Gaussian in figure 4(b) and to the curve as shown in figure 4(a).

The usefulness of the proposed hybrid method can be pointed out. The derived DOS in the
hybrid model reproduces that calculated in the large system of 500 atoms. The hybrid model
is composed of the atomic system of 50 atoms and the nine springs, and the size of this model
is the same as the large system of 500 atoms. This means that the hybrid model can replace a
large-scale atomic model.

In this paper, we have proposed a new methodology coupling an atomic system and
a continuum by extending Andersen’s molecular dynamics method. The elastic stress of
the continuum acts on the atomic system and it replaces the external constant pressure in
Andersen’s method. The displacement field of the continuum is introduced as a new degree
of freedom in the Lagrange function. We applied the method to a one-dimensional hybrid
model which was composed of an atomic chain of argon atoms and springs. It is shown
from the density of states of the phonon in the hybrid model that our method is effective for
implementing large-scale simulations with reasonable computational costs.

References

[1] Vashishta P and Nakano A 1999 Comput. Sci. Eng. 1 20
[2] Nieminen R M 2002 J. Phys.: Condens. Matter 14 2859
[3] Kohlhoff S, Gumbsch P and Fischmeister H F 1991 Phil. Mag. A 64 851
[4] Ogata S, Lidorikis E, Shimojo F, Nakano A, Vashishta P and Kalia R K 2001 Comput. Phys. Commun. 138 143
[5] Rafii-Tabar H, Hua L and Cross M 1998 J. Phys.: Condens. Matter 10 2375
[6] Nakano A, Bachlechner M E, Kalia R K, Lidorikis E, Vashishta P, Voyiadjis G Z, Campbell T J, Ogata S and
Shimojo F 2001 Comput. Sci. Eng. 3 56
[7] Broughton]J Q, Abraham F F, Bernstein N and Kaxiras E 1999 Phys. Rev. B 60 2391
[8] Abraham F F, Broughton J Q, Bernstein N and Kaxiras E 1998 Comput. Phys. 12 538
[9] Abraham F F, Bernstein N, Broughton J Q and Hess D 2000 MRS Bull. 25 27
[10] Tadmor E B, Ortiz M and Phillips R 1996 Phil. Mag. A 73 1529
[11] Rudd R E and BroughtonJ Q 1998 Phys. Rev. B 58 R5893
[12] Rudd R E and Broughton J Q 2000 Phys. Status Solidi b 217 251
[13] Andersen H C 1980 J. Chem. Phys. 72 2384
[14] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
[15] Nosé S 1984 Mol. Phys. 52 255
[16] Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471
[17] Senda 'Y, Shimojo F and Hoshino K 2002 J. Phys.: Condens. Matter 14 3715


http://dx.doi.org/10.1109/MCISE.1999.790583
http://dx.doi.org/10.1088/0953-8984/14/11/306
http://dx.doi.org/10.1016/S0010-4655(01)00203-X
http://dx.doi.org/10.1088/0953-8984/10/11/003
http://dx.doi.org/10.1109/5992.931904
http://dx.doi.org/10.1103/PhysRevB.60.2391
http://dx.doi.org/10.1063/1.168756
http://dx.doi.org/10.1103/PhysRevB.58.R5893
http://dx.doi.org/10.1002/(SICI)1521-3951(200001)217:1<251::AID-PSSB251>3.0.CO;2-A
http://dx.doi.org/10.1063/1.439486
http://dx.doi.org/10.1063/1.328693
http://dx.doi.org/10.1080/00268978400101201
http://dx.doi.org/10.1103/PhysRevLett.55.2471
http://dx.doi.org/10.1088/0953-8984/14/14/304

	References

